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11: The Continuous and Discrete Fourier Transforms

The Continuous Fourier Transform
We’ve already discussed the continuous 1D Fourier transform

F (ν) =

∫ +∞

−∞
f(x)e−i2πνx dx

and its inverse

f(x) =

∫ +∞

−∞
F (ν)e+i2πνx dν

The 1D signal which arises from the application of magnetic (gradient)
fields in the x direction is

s(k) =

∫ +∞

−∞
ρ(x)e−i2πkx dx (11.1)
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11: The Continuous and Discrete Fourier Transforms

If we were able to continuously measure s(k) for all k,
then we could compute the inverse Fourier transform

ρ(x) =

∫ +∞

−∞
s(k)e+i2πkx dk (11.7)

and obtain our spin density.

Unfortunately or fortunately we can only measure/record/observe the
signal at discrete time intervals. Every ∆t.

If the measured signal is sm(k), the inverse Fourier transform which is the
estimated spin density ρ̂(x) is

ρ̂(x) =

∫ +∞

−∞
sm(k)e+i2πkx dk (11.8)
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11.2: Continuous Transform Properties & Phase Imaging
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I can do this too!

Actually the MR image was a .jpg (joint photographic experts group).
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11.2: Continuous Transform Properties & Phase Imaging

Complexity of the Reconstructed Image
Our true image ρ(x, y) is always real,
our reconstructed image ρ̂(x, y) is not in general real.

One obvious reason is a constant phase shift.

s̃(k) = eiφ0s(k) (11.9)

which can arise from the real and imaginary channels being switched or
from incorrect demodulation and leads to

ρ̂(x) = eiφ0ρ(x) (11.10)
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11.2: Continuous Transform Properties & Phase Imaging

The Shift Theorem
Signal shifted by k0 in k-space so truly not s(k) but truly s(k − k0).

Can happen because of improper demodulation or
center of echo at k = k0 instead of k = 0

The effect on the 1D spin density is

ρ̂(x) =

∫ +∞

−∞
sm(k − k0)e

i2πkx dk

= ei2πk0x
∫ +∞

−∞
sm(k′)ei2πkx dk′

= ei2πk0xρ̂expected(x) (11.11)

in the third line change of variable k′ = k − k0 and dk′ = dk.
The magnitude is not affected, |ρ̂(x)| = ρ̂(x).
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11.2: Continuous Transform Properties & Phase Imaging

There can also be a spatial shift due to an improper read gradient as in
Figure 11.2.

Phase Imaging and Phase Aliasing

Read. Not discussing. I think it is important.

Duality

The shift theorem also applies to the delta function.

h(x) = δ(x − x0)

H(k) = e−i2πkx0 (11.14)

7



MCW Biophysics 230: NMR DB Rowe

11.2: Continuous Transform Properties & Phase Imaging

Convolution Theorem (The most important theorems in MRI!)

Get a modified image due to multiplication by function (‘filter’).
The Fourier transform of a product

F {g(x) · h(x)} = G(k) ∗ H(k) (11.16)

where

G(k) ∗ H(k) ≡
∫

G(k′)H(k − k′) dk′ . (11.17)

the reverse is also true,

F {g(x) ∗ h(x)} = G(k) · H(k)

The details of the convolution are learned on Biophysics 03240.

But do know the theorem! There are very important practical implications.
See Figure 11.5.
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11.2: Continuous Transform Properties & Phase Imaging

Convolution Associativity
a(x) ∗ (b(x) ∗ c(x)) = (a(x) ∗ b(x)) ∗ c(x)

Other Convolution Properties

g(x) ∗ h(x) = h(x) ∗ g(x) commutative

g(x) ∗ (h1(x) + h2(x)) = g(x) ∗ h1(x) + g(x) ∗ h2(x) distributive
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11.2: Continuous Transform Properties & Phase Imaging

Derivative Theorem (We already discussed this)

F{f ′(x)} = F
{

df(x)

dx

}

=

∫ +∞

−∞

[
df(x)

dx

]
e−i2πkx dx

=

[
f(x)e−i2πkx

∣∣∣
+∞

−∞
− (−i2πk)

∫ +∞

−∞
f(x)e−i2πkx dx

]

= i2πkF (k) (11.22)

in the second to last line we integrated by parts∫
g(x)h′(x) dx = g(x)h(x) −

∫
g′(x)h(x)dx

where g(x) = e−i2πkx and h′(x) =
df(x)
dx .

FT of derivative (1D image) f ′(x) by multiplying F (k) by i2πk.
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11.2: Continuous Transform Properties & Phase Imaging

Example:
When taking the derivative of an image, it is actually discrete differences.
Consider the following discrete function f(x).
Define the derivative at a point xi to be

f ′(xi) =
f(xi) − f(xi−1)

xi − xi−1
.

Then the function along with its derivative are

x

f(
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This is also true in two dimensions.
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11.2: Continuous Transform Properties & Phase Imaging

Now look at Figure 11.6 in the book.

A 1D derivative of the magnitude image is taken in the vertical direction.

The magnitude means derivative is strictly positive.

We could also take a 2D derivative, the gradient.
The derivative or gradient tells us where the edges are in the image.
Can also do the Laplacian.

What about integrals?

Fourier Transform Symmetries
Read.
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11.2: Continuous Transform Properties & Phase Imaging

Summary of 1D Fourier Transform Properties
Property Function Transform

Linearity af(x) + bg(x) aF (k) + bG(k)

Similarity f(ax) 1
|a|F (ka)

Shifting f(x − a) e−i2πkaF (k)

Derivative
d`f(x)

dx` (i2πk)`F (k)
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11.3: Fourier Transform Pairs

Heaviside Function
The Heaviside function is

Θ(k) =





1 k > 0
1
2 k = 0
0 k < 0

. (11.24)

Here is a picture of the Heaviside function. Often it doesn’t have the 1
2.

The inverse Fourier transform of the Heaviside function can be found as

hΘ(x) = F−1{Θ(k)}
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11.3: Fourier Transform Pairs

hΘ(x) =
lim

ε → 0+
∫ +∞

−∞
Θ(k)ei2πkxe−2πε|k| dk

=
lim

ε → 0+




∫ 0−

−∞

=0︷︸︸︷
Θ(k) ei2πkxe−2πε(−k) dk

+

∫ +∞

0
Θ(k)ei2πkxe−2πεk dk

]

=
lim

ε → 0+
∫ +∞

0
Θ(k)e−2π(ε−ix)k dk

=
lim

ε → 0+ 1

2π(ε − ix)
e−2π(ε−ix)k

∣∣∣∣
+∞

0

*e−2π|k|x to eliminate convergence ambiguities
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11.3: Fourier Transform Pairs

hΘ(x) =
lim

ε → 0+ 1

2π(ε − ix)

=
lim

ε → 0+ 1

2π

1

(ε − ix)

(ε + ix)

(ε + ix)

=
lim

ε → 0+ 1

2π

(ε + ix)

(ε2 + x2)

=
lim

ε → 0+ 1

2π

[
ε

(ε2 + x2)
+

ix

(ε2 + x2)

]

=
1

2π
δ(x) +

i

2π
P (

1

x
) (11.25)
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11.3: Fourier Transform Pairs

Lorentzian Form
The two sided (double exponential)

f(k) = e−a|k|

inverse Fourier transform of this is

F (x) =

∫ +∞

−∞
e−a|k|ei2πkx dk

=

∫ +∞

−∞
e−a|k|ei2πkx dk

=

∫ 0

−∞
e(i2πx+a)k dk +

∫ +∞

0
e(i2πx−a)k dk

=
1

(i2πx + a)
e(i2πx+a)k

∣∣∣∣
0

−∞
+

1

(i2πx − a)
e(i2πx−a)k

∣∣∣∣
+∞

0
(11.26)
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11.3: Fourier Transform Pairs

Lorentzian Form

F (x) =
1

(i2πx + a)
− 1

i2πx − a

=
1

(i2πx + a)

(i2πx + a)

(i2πx + a)
− 1

(i2πx − a)

(−i2πx + a)

(−i2πx + a)

=
i2πx + a

(2πx)2 + a2
+

−i2πx + a

(2πx)2 + a2

=
2a

(2πx)2 + a2

which is called “Lorentzian” form.
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11.3: Fourier Transform Pairs

The Sampling Function
The sampling or comb function u(k) is defined to be the sum of a (doubly)
infinite number of delta functions each ∆k apart.

u(k) = ∆k
+∞∑

p=−∞
δ(k − p∆k) (11.28)

When we measure/record/observe/sample the signal s(k)

at discrete k-space (time) points ∆k (∆t) apart,

this is equivalent to multiplying the continuous signal by the comb function.
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11.4 The Discrete Fourier Transforms

The inverse Fourier transform of the comb function is

U(x) = F{u(k)}

= ∆k
+∞∑

p=−∞

∫
δ(k − p∆k)ei2πkx dk

= ∆k
+∞∑

p=−∞
ei2πp∆kx (11.29)

where +∞∑

n=−∞
ei2πna =

+∞∑

m=−∞
δ(a − m) (11.30)

and thus

U(x) =

+∞∑

q=−∞
δ(x − q

∆k
) (11.31)
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11.4 The Discrete Fourier Transforms

The DFT is an approximation to the continuous FT.

Often in theory assume sm(k) is continuous so we could perform an IFT.

In reality we sample the signal sm(k) at discrete k-space (time) points.

With a length scale L, the discrete Fourier transform

G
(p

L

)
≡ D(g) =

n−1∑

q=−n

g

(
qL

2n

)
e−

i2πpq
2n (11.32)

∆k = 1/L and L = 2n∆x

G (p∆k) =

n−1∑

q=−n

g (q∆x) e−
i2πpq∆x∆k

2n (11.33)

g

(
ql

2n

)
≡ D−1(G) =

1

2n

n−1∑

p=−n

G
(p

L

)
e

i2πpq
2n g (q∆x) (11.34)

=
1

2n

n−1∑

p=−n

G (p∆k) e
i2πpq

2n (11.35)
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11.4 The Discrete Fourier Transforms

Other DFT Pair Parameterizations

F (u) =
1

N

N−1∑

x=0

f(x)e−i2πux/N

f(x) =

N−1∑

u=0

F (u)e+i2πux/N

F (u) =

N∑

x=1

f(x)e−i2π(u−1)(x−1)/N

f(x) =
1

N

N∑

u=1

F (u)e+i2π(u−1)(x−1)/N

∗ Matlab’s “fft” and “ifft” use the second one.
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11.5 Discrete Transform Properties

The Discrete Convolution Theorem
The convolution theorem holds for the discrete convolution just as for the
continuous convolution. Using a shorthand notation,

g1(q)g2(q)
D
− G1(p) ∗ G2(p) (11.39)

and

G1(p) ∗ G2(p) =
1

2n

n−1∑

r=−n

G1(r)G2(p − r) (11.40)

also

g1(q) ∗ g2(q)
D
− G1(p)G2(p) (11.41)
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11.5 Discrete Transform Properties

Summary of Discrete Fourier Transform Properties
Table 11.4 summarizes the DFT properties.
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